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This paper presents a systematic procedure based on the adjoint method for solv
a class of inverse directional alloy solidification design problems in which a desire
growth velocityv; is achieved under stable growth conditions. To the best of ou
knowledge, this is the first time that a continuum adjoint formulation is propose
for the solution of an inverse problem with simultaneous heat and mass transfi
thermo-solutal convection, and phase change. In this paper, the interfacial stability
considered to imply a sharp solid—liquid freezing interface. This condition is enforce
using the constitutional undercooling criterion in the form of an inequality constrain
between the thermal and solute concentration gradiéhtand G., respectively,
at the freezing front. The main unknowns of the design problem are the heatir
and/or cooling boundary conditions on the mold walls. The inverse design proble
is formulated as a functional optimization problem. The cost functional is defined b
the square of the , norm of the deviation of the freezing interface temperature from
the temperature corresponding to thermodynamic equilibrium. A continuum adjoir
system is derived to calculate the adjoint temperature, concentration, and veloc
fields such that the gradient of the cost functional can be expressed analytically. T
cost functional minimization process is realized by the conjugate gradient method \
the finite element method solutions of the continuum direct, sensitivity, and adjoi
problems. The developed formulation is demonstrated with an example of designil
the directional solidification of a binary aqueous solution in a rectangular mold suc
that a stable vertical interface advances from left to right with a desired growt
velocity.  © 1998 Academic Press

Key Words:inverse problems; design problems; adjoint method; functional op
timization; conjugate gradient method; binary alloy solidification; constitutiona
undercooling; double diffusive convection; finite element method.

432

0021-9991/98 $25.00
Copyright(© 1998 by Academic Press
All rights of reproduction in any form reserved.



INVERSE DESIGN SOLIDIFICATION PROBLEM 433

1. INTRODUCTION

Various design, identification, and control problems take the form af\aarse problem
in which, in addition to the various field equations, incomplete conditions are available
part of the boundary, whereas overspecified boundary conditions are supplied in anc
part of the boundary [1-3].

Significant attention has been given to conduction based inverse heat transfer prob
[4-6]. Applications to solidification processes were also addressed [7-11]. Time sequel
as well as whole time domain solution techniques have been developed including finite
infinite-dimensional optimization schemes [4, 5, 9, 12].

Some attention has also been given to inverse heat transfer problems involving fre
forced convection [13—16]. In our recent work [17], we derived a functional optimizatic
formulation and continuum adjoint equations for inverse natural convection problems. T
work was recently extended to the inverse design of solidification of pure substances wi
desired interface heat flu& and growth velocity [18]. The combination o andvs has
important implications on the type and scale of the obtained solidification microstructu
[19].

This paper will generalize our earlier analysis to the inverse design of directional soli
fication processes of dilute binary alloys. Heat and mass transfer and melt flow are the
transport mechanisms in the solidification of binary alloys. In addition, one must consi
the phase change process at the solid-liquid freezing interface. For a dilute binary a
a macroscopic sharp solid-liquid freezing interface can exist at thermodynamic equi
rium at the liquidus temperature corresponding to the interface concentration as dict
by the phase diagram. Assuming a macroscopically sharp interfagell @osed direct
mathematical modedf alloy solidification can then be defined for the calculation of the
temperature, concentration, and flow fields, as well as for the calculation of the interf
shape and growth. The temperature (or heat flux) on the whole mass impermeable r
boundary is assumed to be known in this direct model.

Although the above-stated mathematical direct problem is well posed, there is no gt
antee that its solution will satisfy thee priori assumptiorof a sharp solid-liquid interface.
Such inconsistencies between the analytical model and the physical experiment have
reported in [20]. One of the most simplified necessary conditions for the existence of
sharp solid-liquid front in binary alloy solidification is the absenceafstitutional under-
coolingin the liquid melt ahead of the freezing interface [19]. For the purpose of the pres
inverse design analysis, we will consider that the absence of constitutional undercoolir
sufficient for the existence of a stable growth. A comprehensive review of morphologi
stability in solidification is given in [21].

The structure of this paper is as follows. At firstiederence design directional solidifi-
cation problenmwith a desired growth and an a-priori assumption of a sharp freezing fro
is presented. Through a direct analysis it is shown that such a mathematical design i
consistent with the corresponding physical model and that it eventually leads to an unst
interface growth. A precise definition of amverse design directional alloy solidification
problemis then presented in order to obtairdasired stable growtlior a binary alloy
system. The problem results in two separable inverse problems, one in the solid phase
another in the liquid melt. Emphasis is here given to the inverse problem in the liquid phe
The developed methodology is finally tested with an example problem in the solidificat
of a NH,Cl water solution in a rectangular mold.
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2. DEFINITION OF THE DIRECT PROBLEM AND OF A
REFERENCE DESIGN PROBLEM

2.1. The Direct Binary Alloy Solidification Problem

Let us consider a directional solidification process of a dilute binary alloy that is confin
in mass impermeable mold walls (see Fig. 1a). Initially the alloy melt is at a unifor
concentrationc, and a uniform temperatur§. At time t =0", a cooling heat flux is
applied at the sid& s of the mold wall to bring the boundary temperature to the freezin
temperature corresponding to concentratign

Let us denote the solid region £ and the liquid region a&,. These regions share the
common interface boundafy whose normal vectar is defined pointing towards the solid
region. The regiof2, has a boundary, which consists of", (the solid-liquid interface),
'y (the vertical mold wall on the liquid side), and the remaining boundagy(the top
and bottom horizontal mold walls). Similari§s has boundary's, which included™, I'gs,
andT's. The regions€2, andQ2g are time dependent and the interfdgeis moving to the
right with a nonuniform velocity . Subscripts and¢ are used to denote quantities for the
solid and liquid phases, respectively, while the subsckifg used to denote the freezing
front.

We make the following assumptions about the transport of heat, solute, and momen
in the solidification system:

e Constant thermo-physical and transport properties, including thermal and solute
fusivitiese and D, respectively, viscosity, densityp, thermal conductivityk, and latent
heatL.

Adiabatic Adiabatic
ru.s' I"ﬂl rm. 1"1' v \', l"ol
Cooling Unknown n "1 L Heat flux
flux gas Hcéacl"t'lux Caooling fux vt g Goi=10
Gos chory
Solid Liquid
/
A A
Adiabatic Adiabatic
(a) (b)

FIG. 1. Schematic of theeference problerof binary alloy solidification in a rectangular cavity: (a) the direct
solidification problem with heat flug,s (cooling) on the solid wall’,s and heat fluxg, on the liquid mold wall.
Solidification is assumed to proceed from the left to the right. For arbitargndq,, the effects of convection
will lead to a curved interface as shown. (b) Tieéerence inverse design problémachieve a flat solid—liquid
interface growth with a uniform desired velocitg,(= 0). The heat fluxg.s is appropriately selected using an
inverse heat conduction analysis. In both problems, an a-priori assumption of a stable growth (sharp solid/li
interface) is made.
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FIG. 2. Phase diagram of a dilute binary allay:is the magnitude of the slope of the liquidus lires the
partition ratio andT, is the y-intercept of the solidus/liquidus line.

e The melt flow is assumed to be a laminar convective flow induced by temperature
concentration-dependent density variations subjected to the Boussinesq buoyancy ft
(constant thermal and solute expansion coefficigatand 8¢).

e The solute diffusion in the solid is negligible compared to that of the liquid, i.e
Ds/D, — 0.

e A macroscopically stable sharp interface exists between the solid and liquid regio

The first two assumptions will generally be valid for solidification systems with dilut
concentration level, moderate temperature differences, and a Newtonian liquid melt.
third assumption is true for most semiconductor materials and crystallized aqueous s
tions. The existence of a sharp solid—liquid interface (last assumption) is nontrivial
does not necessarily conform with the physical reality corresponding to the prescril
cooling/heating boundary conditions. More discussion on the validity of the sharp interfz
assumption will be given in Section 2.2 with an example problem.

Let us introduce the dimensionless form of the governing equations. The reference t
perature is taken akef = To — MG, the length scale ds and the time scale &3/«,. The
parameter§, andm are defined in Fig. 2. The following nondimensionalization of space
time, temperature, velocity, concentration, and pressure is introduced:

— X — ot =
le_’ t:l—z’ T:

T-T, _oul _ -c  _ 12
_— e g= =, o ’ p:p_z, 1)
Ti — Tret (674 ¥ Co Py

wherey =1+ (T; — To)/MG indicates the relative amount of initial super-heating of the
liquid melt. We introduce the following familiar nondimensional parame®zrd e, Rar,
Rac, andSte[17]. In the rest of this paper, we will drop the overline “-” in the notation
of the nondimensional quantities and all quantities shown are dimensionless unless
otherwise stated. The nondimensional governing equations take the form

aT (X, t;
(qu) UKL Go) - VTG o) = V2T (6 £ Go)s (6, 1) € Q0(t) x [0, tmad (2)
w +U(X, t; Qo) - VC(X, t; Qo) = Le"IV2e(X, t; Go), (X, 1) € Q4(t) x [0, tmax

®3)



436 YANG AND ZABARAS

ou(X, t; go) ) . . 2 . .
o +U(X, t; go) - VU(X, t; go) = Prveu(x, t; go) — PrRar T (X, t; go) g
—PrRacyc(x,t; go)eg — VP(X, t; 0o), (X, 1) € (1) x [0, tmay (4)
VuX, t;00) =0, (X, t) € Q(t) x [0, tmay (5)
TX 0 =1 ¢cX% 0 =0 ux 0 =0, xe M0 (6)
oT
a—n(x, t;00) =0, (X,t) € T'he x [0, tmay (7)
oT
a_n(xv tv QO) = qolf’ (X7 t) S FO@ X [O, tma)J (8)
ocC
%(X, t;00) =0, (X,1) € The UTx) x [0, tmay 9
ux,t; o) =0, (X,t) € Ty x [0, tmay (10)
oT (X, t;
TE) R v2T(x o), 00, 1) € 24 x 0, e
(11)
oT
%(X, t; Oo) = Oos, (X, t) € I'os X [0, tmay (12)
oT
%(X, t’ qO) = 07 (X7 t) € 1—‘hS X [O’ tmax-l (13)
TX, t;00) =cX, t;0) X, t) € '} x [0, tmay (14)

ac
506t Qo) = Lefve (x, £ Go) - (L — )[C(X, t; Go) — .
X, 1) €Ty x [0, tmay (15)
T, aT.
a—n'(x,t; Qo) — Rka_nS(X,t; Qo) = Stelve (X, t; Qo) - N, (X, 1) € T} x [0, tmay,
(16)

whereR, =as/a¢, R =Ks/ k¢, = 0/]9| is the unit vector in the direction of gravity, and
k is defined in Fig. 2. The Stefan condition (Eg. (16)) can be used to define the interf:
motion. The thermodynamic equilibrium condition is stated with Eq. (14), which is derive
from the dilute alloy phase diagram (Fig. 2).

Note that the above problem has been presentedgyils a parameter. This emphasizes
the parametric dependence of the solutiogx, t), c(x,t), u(x,t), andvs(x,t) on the
boundary heat fluxes, in Eq. (8) andyysin Eq. (12). Finally, we note that for the reference
direct problem of Fig. 1a, one must solve the above equation system, together with
a priori assumption of a stable sharp interface growth.

2.2. A Reference Design Problem with a Desired Interface Growth

Here we will introduce a reference design problem (see Fig. 1b) @ita-0 and a
flat interface throughout the process of solidification. The invezfsrence design prob-
lemis stated as followsFind the appropriate cooling heat flux.(y, t) at the vertical
solid mold wallT"ys such that the solid/liquid freezing interface remains flat and advance
with a spatially uniform velocity; (t) into the liquid. The governing equations are still
Egs. (2)-(16), where the differences from the direct problem of Section 2.1 ai,$lat
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Eqg. (12) is problem unknown, whikeg in Egs. (16) and (15) is explicitly given. Since the
transient location of the interfadg (t) is given (through integration of; (t)), the solid and
liquid domains are known at all times. We can separate the above inverse problem into
subproblems and solve them sequentially:

e A quasi-direct problem in the liquid regian, (t): Using Egs. (2)—-(10), (14), and (15),
calculate the temperature, velocity, and concentration fields in the melt. The tempera
and concentration gradien®B= 9T,/dn andG, = dc/adn, respectively, at the interfadg
can be obtained from the temperature and concentration field solutions. In order to ider
the present results with the reference problem of Fig. 1b, we will denote these calcul:
temperature and concentration gradients at the freezing frad®aandG'®", respectively.

e Aninverse heat conduction problem in the solid regityit): Using Eq. (11) with the
boundary condition Eqg. (13) and the overspecifying boundary conditiofis iemperature
and heat flux from the solution of the quasi-direct problem in the liquid and the Stef
condition from Eg. (16)), find the unknown heat flgy(y, t) onT'es. Such a problem can
be solved with the adjoint equation technique of [11] and it will not be repeated in tt
paper.

2.3. Numerical Solution of the Reference Design Problem and a posteriori Examinatiol
of the Sharp Interface Assumption

Let us take an example of the solidification of a M water solution (1.5% weight
concentration) with initial overheating af — T, = 20°C, in a rectangular cavity (dimen-
sionless height =1, widthw = 0.5), as shown in Fig. 1b. The inverse design objective i
to realize a vertical flat interface moving froigs to ', at a constant dimensionless veloc-
ity vi =0.2. The thermophysical properties are taken from [22] and are shown in Table
Solidification starts off at =0" when thex =0 boundary is suddenly dropped To=0
(the dimensionless melting temperature at initial concentration) and runstypte1.5
when 60% of the slab has solidified.

A moving finite element method is used to solve the system of Egs. (2)—(10) (queé
direct problem in the liquid melt). The initial mesh tat 0) used is shown in Fig. 3 and
it contains 20x 20 rectangular bilinear elements. The number of elements is maintair
fixed at all times. These elements are deformed uniformly through out the process.
contribution of the mesh velocity is taken into account in the convective terms. A streaml|
upwind Petrov—Galerkin method is used, together with a predictor—corrector scheme fol

TABLE 1
Nondimensional Parameters Used for NHCI-H,O

Name/Meaning Symbol Definition Value used
Prandtl number Pr a‘_z 9.025
Lewis number Le = 27.845
Partition ratio K cs/c,onT 0.3
Relative initial overheat y (T = Ty)/(Mg) + 1 18.152
Thermal Rayleigh number Rar 19187 (T — Teen! 31/ (vare) 2.0x 10¢

Solutal Rayleigh number Rac [191BcCol %1/ (vay) 1.0 x 10*
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FIG. 3. The finite element mesh in the liquid melttat 0.

time integration of the discretized equations. The time step is takan a9.0004 before
t =0.02 andAt = 0.004 afterwards. The numerical implementation follows that of [23, 24
and it is similar to that presented in our earlier work [17].

From all the calculated results, we are particularly interested in the interface heat f
G'®'=G and concentration gradier®™ =G, (Figs. 4a and 4b, respectively). The
calculated fluxG, together with the calculated interface temperature can be used to sc
the inverse conduction problem in the solid and obtain the heatjfiiy, t). We will not
present these results as we will next show that the calcu@at&dind G are already in
contradiction with the assumption of a stable sharp interface between the two phases.

The absence of constitutional undercooling in the liquid melt is used here as a sim
fied form of the necessary conditions for interface stability. This condition is express
mathematically as

G <G, (17)

whereG =9T/dn andG. = dc/an are the gradients in the normal direction of the dimen:
sionless temperature and concentration fields at the liquid side of the interface, respecti
Note that the above equation can also be written in a more familiar form as itgd 9 G,
whereG andG. are the magnitudes of the gradients of the dimensional temperature ¢
concentration fields at the liquid side of the solid—liquid interface rarid the magnitude
of the slope of the liquidus line in the phase diagram (Fig. 2). Equation (17) is here writ
in a nondimensional form and using a normal unit vectat the interface boundary that
points towards the solid phase.

The solution of the reference design problem given in Figs. 4a, b does not satisfy Eq. (
Indeed, let us examine if the solution is such thad =G — G, < 0 is satisfied. From
Fig. 4c (the earlier stagaG < —1.0 is not shown) we do observe thaG > 0 some time
after solidification started. The stability condition is only satisfied at the early stages
solidification (the shaded region of Fig. 4d). At later times, constitutional undercooling t
occurred in the liquid. The physical explanation for the onset of such undercooling mai
lies in the difference between the thermal and solutal diffusivities (their katip- 1) and
because the rejected solute at the interface cannot be diffused as fast as the heat.
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FIG. 4. Examination of the constitutional stability assumption at the solid—liquid interface for the referen
design problem: (a) interface temperature grad@#f(y, t) = (3T/an)(vst, y; t); (b) interface concentration
gradientG®(y, t) = (dc/an)(vet, y; t); (c) differenceA G™ = G™ — G™'; (d) contour lines oAG™ in the (y, t)
plane.

The above mathematical model with the assumption of a sharp solid/liquid interface
thus not physically realistic.

3. INVERSE DESIGN TO ACHIEVE A DESIRED STABLE GROWTH

Referring to the reference design problem of Section 2.2 and in order to achieve a des
interface growth, we relax the adiabatic conditigpat the mold wallly, in the reference
problem of Fig. 1. With a similar configuration, we pose using Fig. 5a the following inver:
design problemEind the cooling condition aff ,s as well as the heat flux conditiog,qy, t)
at the vertical mold wall"o,, in order to achieve a desired growth of the interfttee same
as that in the reference problem of Fith) that is ensured to be constitutionally stalile.,
Eq.(17)is satisfied.
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FIG. 5. Schematic of the inverse problem to achieve a sharp interface moving with a desired growth ve
city v¢ during solidification of a binary alloy in a rectangular cavity: (a) problem requirement and unknowr
(b) inverse subproblem in the liquid phase.

Such an inverse problem can be separated into two subproblems, one inverse prol
in the solid and another inverse problem in the liquid region, respectively. This is possi
since, as part of the design objectives, we consider that the location of the intEfece
explicitly given through the growth velocity; (t). The inverse problem in the solid is an
inverse heat conduction problem. The inverse problem in the liquid, as shown in Fig. 5b, i
find the unknown heat flug, (y, t) at the vertical liquid mold wall’,,, such that at the liquid
side of the interfac®, the following conditions are satisfied: the solute balance (Eq. (15)
the phase diagram liquidus relation (Eqg. (14)), and the constitutional stability conditi
(Eq. (17)). This is a typical inverse problem with overspecified boundary conditions. In ti
problem, three boundary conditions are given at the inteiffacelating the temperature
and the concentration We also have the solute impermeable condition equation (9) ai
an unknown thermal flux condition at the mold wBl,. The major objective of this paper
is to solve such an inverse problem involving heat and solute transport and thermo-sol
convective flow. We call such an inverse design problem with coupled heat, mass,
flow transport mechanisman inverse design thermo-solutal convection probl&mour
knowledge, this is the first time thatcantinuum formulations proposed for the solution
of inverse problems for such coupled continuum systems.

3.1. Enforcement of the Constitutional Stability Condition

Notice that the stability requirement of Eq. (17) is in an inequality form. We can tran
form it to the nondimensional equality form

aT  ac

— = — 1), 18

o = 3p TEWD (18)
wheree < 0. The specific form ot is part of the inverse problem definition. However,
there is freedom in the selection of any nonpositiv, t) in order to enforce stability. Let
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us recall the time variation ck G in the reference example of the last sectiov&(®") and
the loss of stability whery, was simply kept adiabatic. We will here use the calculate
AG™(y, t) in the reference design problem (Fig. 4c) as a basis for choesamgl make
the necessary adjustmentsd¢avhen AG becomes positive (i.e., when the interface of
the reference design becomes unstable). In particular, we select the form of the stal
condition,

AG(y, 1) = €(y, 1)

[ AG®(y, 1), if AG™(y,t) < sLey (1 — k) (vi(t) - n),
— Laley Tt )i (M) -n), i AG™(y, 1) = sley THL — K)(vi (D) - ),
(19)

wheres is chosen as a small scalar parameter. Also, recall that due to the selectiol
the direction ofn, v¢(t) - n < 0. As§ — 0, ¢ — 0 which means that marginal stability is
maintained afteA G > 0. The underlying physics for such a choice is to pursue minimur
heating flux input at the liquid boundary mold wall,, thus minimum cooling at the
solid mold wallT"o5 and overall a minimum energy consumption that ensures the desir
stable growth. The “over-stable” amount parameterized yyintroduced for numerical
accuracy considerations since, theoretically, the optimum heaifl(x t) atI'y, calculated
with ¢ =0 may also be able to avoid the occurrenceAd® > 0. However, the design
for an interface that is slightly over-stable will compensate for the numerical error in t
implementation of the discretized problem. The specific form of such an over-stable amc
can be understood from its equivalent dimensional form,

G=m Gc+5%(1—/c)|vf(t)-n| , (20)
L

where, following the notation of [19]; and G, are in the above equation referring to the
magnitudes of the corresponding gradientS ofndc, respectively. The second term on
the right hand side of the above equation can be thought of as the perturbaBgrbpfa

3 portion of its estimation through the dimensional form of Eq. (15) with a fixett, on
the right-hand side of Eq. (15).

There might be physical considerations other than marginal stability/minimum enel
consumption that someone can use to chegget), such as minimization of the solute
inhomogeneity in the final solidified product. Since this paper represents the first st
of the inverse design of stable interface growth, we will only use the simplified margir
stability conditions given here withbased on Eq. (19).

3.2. The Adjoint Method Formulation

3.2.1. Definition of the optimization problemThe inverse design thermo-solutal con-
vection problem in the liquid can be formulated as an optimization problem. With tl
guessedheat flux condition at the liquid boundary mold wall,

XD =G D, D € Ty x [0, o (21)

and using Egs. (2)—(5), initial conditions equation (6), and boundary conditions equati
(7)—(10) and (18), one can define a direct thermal-solutal convection problem on a |
scribed domairt2,(t). Let us denote its solution for the temperature, concentration, al
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flow fields asT (X, t; gor), C(X, t; doe), andu(X, t; gor), respectively, indicating their para-
metric dependence apy,. Note that the liquidus relation equation (14) is not used in thi
direct problemdefinition, thus it is not certain that it will be satisfied. Instead, for arbitrar
Jor € L2(Toe x [0, tmay]) We define a cost functional

tmax
(o) = / [T O Goe) — C(X, t: Goo)]2 dT” dit (22)
0 I

to indicate the discrepancy of the calculated temperature from the concentration-deper
liquidus temperature at the interface. In the most familiar dimensional form, the above c
functional is defined using the discrepancy between the calculated interface tempEratu
and the equilibrium freezing temperatie — mc). Such a cost functional can be thought
of as a measure of the deviation of the interface from the thermal conditions correspont
to thermodynamic equilibrium.
The inverse problem in the liquid is restated in a minimization sense as folfoaca

quasi-solutiory, € L2(Cg x [0, tmay) such that

S(Gor) < S(O) Y O € La(Toe % [0, tma),

whereT andc in the functionalS are defined by Egs. (2)—(5), (6), (7)—(10) and Eq. (18
for a givenqy,.

Certain compatibility conditions are generally required between the givenvgata
the material properties, and geometry in order for a solution of the inverse problem
exist with S(fo) = 0. In this paper, our objective is to construct a minimizing sequenc
qj)g(x, t)yeL(Te x [0, tmad), i =1, 2, ..., that converges to at least a local minimum of
S(gwe). If such a minimum can lead to an interface growth that is close enough to the desi
growth conditions and is constitutionally stable, then an acceptable design solution has|
obtained.

3.2.2.Governing equations of the sensitivity problerio perform the optimization pro-
cedure that minimizeS(qy) in L2(I'g X [0, tmay), we will need to define aontinuum sen-
sitivity problem This linear problem defines the linear perturbati®, t; gor, AQy) =
Dage T(X, t: Qor), C(X, 15 o, AQo) = Dagy C(X, t; Gor), @ndU (X, t; Qor, AQw) = Dagy
u(x, t; gor) of the fieldsT (x, t; doe), C(X, t; o), @andu(X, Y; qoe), respectively, due to vari-
ationsAqq (X, t) of the boundary heat flugy, i.e.,

T(X, t: Qo + AGw) = T(X. t: Gor) + O (X, t; Gor. AGor) + O (AUt 1,y x(0.1ma))
(23)

C(X, t; ot + Alor) = C(X, t; Gog) + C(X. 5 Gor. AGoe) + O (1 AGot 1 1y 0.t )
(24)

U(X, t; O + Alor) = U(X, t; Gor) + U(X, t: Gor Aber) + O (1 AT I 1 w[0.tmand) ) -
(25)

Linearization of the direct problem results in the continusensitivity problem

A0 (X, t; o, Alo)
ot
= V2O(X, t; Go, AQo), (X, 1) € (1) X [0, tmay] (26)

+ U(X, t; go, Alg) - VO(X, t; Oo, Alo) + U(X, t; o, Alo) - VT (X, 1; 0o)
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aC(X, t; o, A
M + U(X, t; 9o, AQy) - VC(X, t; o, Alo) + U(X, t; 0o, Alg) - VC(X, t; 0o)

at
= Le IV2C(X, t; Oo, Alo), (X, 1) € (1) X [0, tmax (27)
G o, A%) t;?"’ 29) L 4, i o) - VU, £ Gor AGo) + UK, t: Gor Ad) - VU £ Go)
= —V - TI(X, t; Go) + Prv2U(X, t: Go. AGo) — PrRar O (x, t; o, Alo)€y
+yRacC(X, t; Go, AQo)Ey, (X, 1) € Q¢(t) x [0, tmay, (28)
V- U(X, t; 0o, Alo) =0, (X, 1) € Q¢(t) x [0, tmad, (29)
O(X, 0; do, Ado) =0, x € 2,(0), (30)
C(x,0; 0o, AGo) =0, X € 2(0), (31)
U(X, 0; 0o, AGo) = 0, X € 2,(0), (32)
Tt G AGo) = 0, (1) € (T UTY) % [0, o (33)
30
an (X, t; 0o, Alo) = AGo(X, 1), (X, 1) € Tor x [0, tmax, (34)
aC
%(X, t; 0o, AQo) =0, (X,t) € (' U o) x [0, tmay, (35)

aC
%(Xﬂ t’ qu AqO) = Le(l - K)(Vf N n)C(X7 t’ qu AQO)’ (X’ t) € Iﬂ| X [07 tmaXL (36)

U(Xv t7 qO’ AqO) - 07 (Xv t) S FZ X [07 tmax]» (37)

wherell is the sensitivity pressure.

3.2.3.Governing equations of the adjoint problemnin order to realize the minimization
of S(qw), it is essential to find its gradient (derivativB)qy) with respect tagy, that is
defined by:

tmax
Dag, S(Go) = /O / S (Gor (%, 1)) AGoe (x, 1) " dit. (38)
Fo

After some lengthy manipulations (see [25]), we can definetheint problem

P + UKt Go) - VI (X, 5 Go) = =V (X, t; Qo) + (X, t; o) - €,

(X, 1) € Q(t) x [0, tmad, (39)

~1| o2 yRac

P +UX, ;o) - Vo(X, t; 0o) = —Le™7| Vop(X, t; o) + Ra d(X, t; Qo) - &,
ar

(X’ t) S Qe(t) X [Oa tmax]a (40)

ot

= —Prv2¢(x, t; go) — Vr(X, t; go) + PrRar [ (X, t; Qo) VT (X, t; Qo)
—Lep(x, t; o) VE(X, t; Qo)], (X, t) € Q,(t) x [0, tma, (41)

+U(X, t; Go) - VA(X, t; Go) — [VU(X, t; Uo)] T p(X, t; Go)
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V : ¢(Xa ta qO) = 05 (Xa t) € Qf(t) X [07 tmax], (42)
with end conditions

Y (X, tmax 0o) = @(X, tmax Jo) = 0, X € Q¢(tmax),
(X, tmax; Go) = 0, X € Q¢(tmax), (43)

and the boundary conditions

d 1 0o
w — (Vi - MYt Go) = TX t500) — C(X, t; Qo),
x,t) e} x [0, tmay, (44)
0 U 0o
% = Le(vi - n)[ke(X, t; Qo) + (1 — k)P (X, t; qo)]
+ T (X t;Go) = C(X, t; Go), (X, 1) € I'y x [0, tmay, (45)
W =0, (X,t) € (T UThe) x [0, tmay, (46)
w = O, (X, t) (S (Fog U FhZ) X [0’ tma)J’ (47)
GOt Go) =0, (1) €Ty x [0, ta]. (48)

It can be shown that the gradient $fg.,) is given as [25]
S(Ou) = ¥ (X, t; o), (X, 1) € For X [0, tma.- (49)

Inthe limit case of.e — 0, the adjoint equations f@t/, ¢) are decoupled from those for
¢. The adjoint system is reduced to an identical form to that developed earlier for inve
natural convection problems [17, 18].

3.2.4.The conjugate gradient algorithmWe have outlined above the definition of the
continuous direct, adjoint, and sensitivity problems. The conjugate gradient method (CC
can now be used for the minimization of the cost functid(aly). It constructs a sequence:
a%, a%, ..., d.,..., to approach the optimal minimizég, [26, 27]. The optimization
procedure is the following:

StepA. Make an initial guess af (x, t) € La(To x [0, tmay) and set =0.

StepB. Calculate the conjugate search directiBix, t), (X, t) € Iy x [0, tmad:
1. Solve the direct problem faF (x, t; d!,), (X, t; g,), andu(x, t; g.,).
2. Compute the residual[(x, t; q',) — c(x, t; qi,)] for (x,t) € Ty x [0, tmad.
3. EvaluateS(q,) from Eq. (22); IfS(q),) < tol (given tolerance), sy =g\, and
stop.
. Solve the adjoint problem backwards in time fogx, t; q,).
. SetS(qly) = v (x, t; qly) for (x, 1) € T'o x [0, tmax-
. Sety' =0, if i =0; otherwise,

- (S(ak). S(A) = S (0 ") Lo o)
= — 2 .
H S(Q(I)e 1) H L2(Te x[0,tmax)

. Definep' (x, t).Ifi = 0setp® = —S(q}); otherwisep' = —S(g))(x, t) +' p' %

(o262 I N

~
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StepC. Calculate the optimal step sia&:
1. Solve the sensitivity problem fa®(x, t; g, p'), C(x,t; g, p'), and U(x, t;
Qoe» P _
2. Calculatex' by
o = — (S(900): P') Ly 10t
- - B - B 2 .
’|®(X’ t: Qg pl) - C(X’ t; Qg pI)HLz(F.x[O,tmax])

StepD. Updateq, ™ (x, t) = g, (x, t) + &' p' (X, 1), (X, 1) € T x [0, tmax.

StepE. Seti =i + 1 and go to Step B.
The inner product in thé , space involved in the CGM procedure is defined as

tmax
(. O a0y = / / fgdrdt. (50)
0 r

4. NUMERICAL IMPLEMENTATION, RESULTS, AND DISCUSSION

The inverse algorithm of Section 3 is implemented here for the solidification |
NH,4CI-H,O that was also used in the reference design problem of Section 2.3. Howe
the objective here is to find the transient histories of heat fluxes=20.5 and atx = 0 that
result in a stable growth with a desired constant front velocity. To overcome the difficulty
the end condition of the adjoint method (recall that based on Eq. (43) and for each itera
i we have that;ﬂ,e(y, tmax) = q&(y, tmax); i.e.,qg[(y, tmax) Maintains its value from the initial
guess solution), we modify the choice of the interface growth velocity as follows:

tnax—t
0 s tmid < t < tmax
max— ‘mid

Vo, OStSt ids
ve(t) = {U° ™ (51)

Integration ofv (t) gives the resultant desired interface location as

Vol, 0 <t < tmid (52)
s(t) = 12
L; [tmid + tmax — o, U ] s tmid < < tmax

(tmax—tmid)
where we select the dimensionless parameterg as0.2, tmig = 1.5, andtpax = 2.0. An
initial guessq (y, t) = 0 is made. The desired interface growth slows down afteityq
and is such thats (tmay = 0. The selection o¥; (t > tmig) — O allows the interface con-
centration gradien, — 0 and leads to a solutal convection that dies out fertyg. The
thermal field is also expected to be smoothed out by tiggeand thus the approximation
Joe (Y, tma) = O is a reasonable one.

The finite element formulation is similar to that presented in our previous wo
[17, 18]. The time stepping technique for the direct and sensitivity problems is a sel
implicit predictor/corrector procedure [23], while a Crank—Nicholson scheme is used
the time discretization of the adjoint problem. The adjoint problem is linear, includir
the coupling among adjoint thermal, concentration, and velocity equations, and thus
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FIG. 6. Convergence of the cost functiortélgy ) for § = 0.2 ands = 0 (note that thé = 0.2 case converges
slightly slower).

Newton—Raphson type of iterations are needed within a time step for its solution. The sz
time step is used for the direct, sensitivity, and adjoint problems. This is important cons
ering that the solution of the adjoint problem requires the solution of the direct problenr
all time levels. The discretized equations are similar to those in [17].

The finite element mesh and time step sizes are the same as those used for the so
of the reference problem in Section 2.3. The total number of time steps is 545 for eacl
the direct, adjoint, and sensitivity problems in a single CGM iteration. The cost of ea
CGM iteration was abdul h CPU time on the IBM/RS6000 (SP2). As a preliminary study
of the solution of such inverse problems and in consideration of the computational c
the Rayleigh number used here (see Table 1) is lower than the actual number under no
laboratory conditions.

For purposes of performing an accuracy study and comparisonghetf ands = 0.2
are chosen as the parameter for “over stability” in Eq. (19). 3ke) case is seeking a
heat flux solution that strictly leads to marginal stability. For this case, the CGM algorith
proceeds up to 100 iterations when the cost functi®walO(10-°), as shown in Fig. 6.
Final optimum heat flux solutiorty (y, t) are shown in Fig. 7. The calculated flqgg(y, t)
at various CGM iterations is also shown in Fig. 8.
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FIG. 7. Optimum heat fluxj, (y, t) for (a) § =0 and (b)§ = 0.2. Both results correspond to heating except
at the very early stages of solidification.
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For the final optimum heat flux, we define the following quantity indicating the ener
input into the melt at the mold wall,,:

"tmax 1
Q= /0 /O G (v, Dy dt (53)

Since § is the solution corresponding to the parameie® will also depend ors.

In this example,Q|s—o=0.5173 andQ|s—o> = 0.5828. Their difference is very close to
fémaxfol(d(;:o — €|s—02)dydt=0.066, which is consistent with an energy balance. Th
amount of heat input required at the mold wall boundary is directly related to the amo
of “over stability” imposed or achieved at the freezing interface.

A validation procedure is performed to check the accuracy of the interface stability ab
the optimum heat flux solutiddpy (y, t). A quasi-direct problemin the liquid as in Section 2.2
is solved, using the obtainedl,(y,t) as boundary condition at thE,, mold wall at
x=0.5. Using an approach similar to that shown in Fig.Gl,and G, are computed
a posterioriand the contours oA G are plotted in Fig. 9. Since the cost functional cannot b
reduced to zero exactly, the quasi-direct validation solution produces certain regions \
positive AG along the interface whefi=0 is used in Eq. (19) while seeking a marginal
stability solution (Fig. 9). A nonzeré solution reduces the previously (i.e., wigh= 0)
obtainedA G by a certain amount. Whether this amount is enough to overcome the appt
ance of positiveA G at all times (except nedt= tn,) depends on the accuracy that has bee
reached in the optimization scheme. A heat flux solutiguy, t) from relatively largers
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FIG. 9. Contours of AG corresponding to the optimuid(y,t): (@) § = 0.2: AG < 0 which implies
that a stable interface is achieved for most of the times, except for a small region (shaded}nggag. The
existence of this region is due to the fact thét,a) =0 from v (tmax) = O even thougls #0; (b) § =0; a stripe
(shaded) centering near the interface locatyen 0.12 hasAG > 0 (unstable), while the bottom part of the
interface is always “over stable.” Because of the convective effgets).12 represents the location around which
constitutional instability will develop. Note that up to tirhe- 0.15 and due to the initial high interface temperature
gradient, a stable growth is observed. The maximum deviation from the stability conditions is observe@l at

can lead to a stable interface growth even though it is one that has not reached very s
values of the cost functional in the CGM iterations.

Representative transient temperature, concentration, and flow fields (contour line:
isotherms, isopleths, and stream functions) of the quasi-direct validation problem are
played in Fig. 10, under the boundary heat ffigxthat leads to stable growth. Because of
such a heating flux at=0.5, a horizontal temperature gradient is maintained up to tim
tmig=1.5. This is the key mechanism that allows the thermal gradient at the interface
overcome the intrinsic concentration gradient due to solute rejection and thus to lead
stable growth. SincBr > 1, the maximum strength of convection is established at an ear
stage { ~ 0.3). For the current choice &ar /Ra: and geometry, only one major convec-
tion cell appears whose strength is significantly reduced after tijjgeSince the solute
diffusivity is small, the convective flow strength controls the magnitude of the curvatu
of the isopleths near the interface:=0.12 turns out as the location on the interface with
maximum concentration gradients, and thus, closest to conditions of marginal stability. T
explains our earlier observations in Fig. 9.

InFig. 11, we record the spatial-temporal history of the interface temperature as calcul:
from the quasi-direct validation solution. From Eq. (14) and the phase diagram Fig.
we know that the contours of Fig. 11b also provide a representation of the pattern
solute distribution in the final solidified product. The spatial nonuniformity of the solu
distribution is induced by convection flow effects and is sensitive to the growth veloc
variations (note that the isotherms change directions affge= 1.5 whenv; starts to
decrease).

The solution@os(y, t) of the inverse heat conduction problem in the solid region i
shown in Fig. 12. It is obtained by the adjoint method, using the interface heat flux &
temperature in Fig. 11a from the quasi-direct validation problem &vith0.2. Additional
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nondimensional parameters involved &e= R, = 1 andSte=0.3. Its combination with
Goc from Fig. 7b provides the complete solution that leads to a stable interface growth
described by Egs. (51) and (52).

5. CONCLUSIONS

In this work, a systematic continuum formulation of the adjoint method is propos
to solve an inverse thermo-solutal convection problem. The objective is to control 1
boundary heating/cooling fluxes such that solidification of dilute binary alloys procee
with a desired stable interface growth. Such study identifies possible inconsistencies ir
previous binary alloy solidification models that a-priori assume a macroscopically sh
solid/liquid interface. The stability criterion was here chosen as the absence of constitutic
undercooling in the liquid ahead of the interface. Such relation of the interface stability
treated as an overspecified boundary condition in the inverse problem formulation. Ba
on additional physical arguments of marginal stability and minimum energy input, t

FIG. 12. Optimum heat fluxges(y, t) at solid mold wall.
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constitutional undercooling condition is implemented in the form of an equality. We defi
the cost functional as the thermal deviation of the freezing interface from thermodynal
equilibrium. The inverse design problem is posed as the calculation of the optimum bounc
heat flux that leads to the minimization of the cost functional. A close form of the adjoi
equation system is derived with coupled thermal, solute, and flow transport mechanis
The definition of the adjoint system is made such that the boundary value of the adije
thermal variable at the fixed wall is equal to the gradient of the cost functional. The conjug
gradient algorithm is used to solve for the optimum boundary heat flux that minimizes |
cost functional. Since such a heat flux is a function varying in space and time, the adj
method provides an elegant and efficient numerical scheme for the solution of this clas
problems. An example case of the solidification of JHwater solution in a rectangular
cavity is performed for moderate strength of thermo-solutal convection. Introduction
small amount of “over-stability” is introduced to overcome the problem of loss of stabili
because of the accuracy level that the numerical optimization scheme can reach.The re
are validated to show the achievement of a stable vertical flat freezing interface growt
the desired growth velocity.

The algorithm for an accurate solution of the inverse thermo-solutal convection probler
computationally intensive. Further parametric studies and improvement of the formulat
are needed for systems with larger Rayleigh and Lewis humbers. Such studies can e>
the applicability of the current algorithm to the solidification of semiconductor materie
and metallic alloys and to processes with stronger melt convection. There is a great pote
in improving the convergence of the CGM by other techniques such as regularization
preconditioning. Finally, we should note that the design choice of the boundary heat 1
may not be sufficient to control such complex systems with coupled transport mechanis
Additional means such as forced convection through electro-magnetic stirring or rotat
may be necessary for the design of alloy solidification processes. In addition, solidificat
with force convection and boundary heating/cooling design may lead to processes th:
addition to stable growth lead to the minimization of solute segregation and reductior
various solidification defects. A significant number of analytical and computational isst
in this direction remain to be addressed.

ACKNOWLEDGMENTS

The results presented in this paper were obtained in the course of research sponsored by the National S
Foundation under a PYI Award DDM-9157189 and Grant CTS-9115438 to Cornell University and with supp
from Alcoa Laboratories. The partial support of the senior author by the Air Force Office of Scientific Resea
through the VPI-Cornell Center for PDE Optimization and Control is acknowledged. The computing for this proj
was supported by the Cornell Theory Center, which receives major funding by the NSF and IBM Corporat
with additional support from the New York State.

REFERENCES

1. J. Hadamard, Sur les problem aux derivees partielles at leur signification phy&iduelniv. Princetonl3,
49 (1902).
2. A. N. Tikhonov,Solutions of lll-Posed Problen{slalsted Press, Washington, 1977).

3. D. A. Murio, The Mollification Method and the Numerical Solution of lll-Posed Problénvitey, New York,
1993).



452 YANG AND ZABARAS

. J. V. Beck, B. Blackwell and C. R. St. Clair, Jmverse Heat Conduction, Ill-posed ProblerfWiley-
Interscience, New York, 1985).

5. O. M. Alifanov, Inverse Heat Transfer ProbleniSpringer-Verlag, Berlin, 1994).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26
27

. P. Neittaanraki and D. TibaOptimal Control of Nonlinear Parabolic ProblenMarcel Dekker, New York,
1994).

. N. Zabaras, Y. Ruan and O. Richmond, On the design of two-dimensional Stefan processes with de
freezing front motionsNumer. Heat Transfe21(B), 307 (1992).

. N. Zabaras, Inverse finite element techniques for the analysis of solidification prot&sdesdumer. Methods
Engr. 29, 1569 (1990).

. N. Zabaras and S. Kang, On the solution of an ill-posed inverse design solidification problem using minim

tion techniques in finite and infinite dimensional spadets,J. Numer. Methods Eng36, 3973 (1994).

S. Kang and N. Zabaras, Control of the freezing interface motion in two-dimensional solidification proces

using the adjoint methodint. J. Numer. Methods Eng38, 63 (1995).

N. Zabaras and T. Hung Nguyen, Control of the freezing interface morphology in solidification processe

the presence of natural convectidmt. J. Numer. Methods Eng88, 1555 (1995).

Y. Jarny, M. N.Ozisik and J. P. Bardon, A general optimization method using adjoint equation for solvir

multidimensional inverse heat conductidmt. J. Heat Mass Transfe34(11), 2911 (1991).

A. Moutsoglou, An inverse convection probleinHeat Transfer ASME11, 37 (1989).

P. Cuvelier, Optimal control of a system governed by the Navier—Stokes equations coupled with the

equations, ifNew Developments in Differential Equatiorfg/. Eckhaus, Ed.) (North-Holland, Amsterdam,

1976), p. 81.

M. D. Gunzburger, L. Hou and T. Svobodny, Heating and cooling control of temperature distributions alc

boundaries of flow domaing, Math. Syst. Estim. Contr8(2), 147 (1993).

M. D. Gunzburger and H. C. Lee, Analysis, approximation, and computation of a coupled solid/fluid tem

ature control problenComp. Methods Appl. Mech. Endi8 133 (1994).

N. Zabaras and G. Yang, A functional optimization formulation and FEM implementation of an inverse natt

convection problemComp. Methods Appl. Mech. Enda4(3-4), 245 (1997).

G. Yang and N. Zabaras, Adjoint methods for the design of solidification processes with natural convect

Int. J. Numer. Methods Engsubmitted.

W. Kurz and D. J. FisheFundamentals of SolidificatiofTrans Tech Publications Ltd, Switzerland, 1989).

M. E. Thompson and J. Szekely, Mathematical and physical modelling of double diffusive convection

aqueous solutions crystallizing at a vertical wallFluid Mech.187, 409 (1988).

S. R. Coriell and G. B. McFadden, Morphological stability, Chapter 1B8andbook of Crystal Growth,

Fundamentals: Transport and Stabilityol. 1b (D. T. J. Hurle, ed.), p. 785.

W. D. Bennon and F. P. Incropera, A continuum model for momentum, heat and species transport in bi

solid-liquid phase change systems—II. Application to solidification in rectangle cémity). Heat Mass

Transfer30(10), 2171 (1987).

A.N.Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection domina

flows with particular emphasis on the incompressible Navier-Stokes equatiomy. Methods Appl. Mech.

Engr. 32, 199 (1982).

J. C. Heinrich, A finite element model for double diffusive convection J. Numer. Methods Eng20, 447

(1984).

G. Z. Yang,The Adjoint Method for the Inverse Design of Solidification Processes with ConvéetidD.

Dissertation, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, Aug

1997).

. R. FletcherPractical Methods of Optimizatiofwiley-Interscience, New York, 1987).

. D. G. Luenberge®ptimization by Vector Space Methai¥iley-Interscience, New York, 1968).



